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Abstract—An ECG signal processing method with quad level
vector (QLV) is proposed for the ECG holter system. The ECG
processing consists of the compression flow and the classification
flow, and the QLV is proposed for both flows to achieve better per-
formance with low-computation complexity. The compression al-
gorithm is performed by using ECG skeleton and the Huffman cod-
ing. Unit block size optimization, adaptive threshold adjustment,
and 4-bit-wise Huffman coding methods are applied to reduce the
processing cost while maintaining the signal quality. The heartbeat
segmentation and the R-peak detection methods are employed for
the classification algorithm. The performance is evaluated by us-
ing the Massachusetts Institute of Technology-Boston’s Beth Israel
Hospital Arrhythmia Database, and the noise robust test is also per-
formed for the reliability of the algorithm. Its average compression
ratio is 16.9:1 with 0.641% percentage root mean square difference
value and the encoding rate is 6.4 kbps. The accuracy performance
of the R-peak detection is 100% without noise and 95.63% at the
worst case with −10-dB SNR noise. The overall processing cost is
reduced by 45.3% with the proposed compression techniques.

Index Terms—Biomedical monitoring, biomedical signal pro-
cessing, data compression, signal classification.

I. INTRODUCTION

R ECENTLY, with the increase of the interests in the health-
care, the need for the ECG holter system has been rising

exponentially. The holter system records ECG signal continu-
ously in ambulatory condition for a sizable time like several
hours. The system transmits the record data to the user or the
healthcare center like hospital when the alert ECG signal is
detected or the recording period is finished. In order to moni-
tor and analyze the ECG signal, the functions operated at the
clinical instrument such as signal sensing and the classification,
should be integrated into the light-weight, wearable holter sys-
tem [1]. The most important requirements for the holter system
are ultralow-energy operation for the long battery lifetime and a
small footprint for wearability. The low energy consumption can
be obtained by reduction of the computational complexity, the
memory access, and the data transmission. In general, the high-
est energy consuming parts are the memory transaction blocks
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and the communication blocks integrated in the chip [2]. Zigbee
and Bluetooth are usually used for the transmission channel [3];
however, those wireless communication methods consume more
transmitting power than the data processing power does. There-
fore, minimizing data amount by data compression is essential
to reduce the total system energy consumption.

Many ECG signal compression algorithms were introduced,
and they can be classified into two major groups, the lossless
and the lossy algorithms [4]. The lossless algorithms such as
Lempel–Ziv–Welch (LZW) [5] and Huffman [6] do not show
sizable quantization error, while the compression ratio (CR) is
generally smaller than that of the lossy algorithm. The CR is
typically between 2:1 and 4:1. The lossy algorithm has a com-
paratively higher CR, typically between 10:1 and 20:1, while it
has a possibility to lose the significant information. The lossy
algorithm can be classified further into two categories: the di-
rect signal compression and the transformation compression.
The direct compression techniques are based on the extrac-
tion of a subset of significant samples, such as the FAN [7],
CORTES [8], AZTEC [9], and Turning Point [10] algorithms.
The transformation techniques retain the coefficients of its par-
ticular features; and the signal reconstruction can be achieved by
an inverse transformation process. Wavelet transform [11]–[15],
Fourier transform [16], and the Karhunen–Loeve transform [17]
have been introduced for the transformation compression tech-
niques. In contrast to the direct compression techniques, the
transformation techniques require heavy arithmetic calculation
and large temporary memory capacity due to their large-scale-
frame-based transformation operation. For the lossy compres-
sion techniques, the reduction of the reconstruction error rate is
also important issue, because the error may distort diagnostic
information. Moreover, the processing cost is a critical factor
in the design of the holter system. The processing cost is com-
posed of the encoding delay time, computational complexity,
and the memory capacity. Thus, the tradeoff should be made
between the CR, the reconstruction error, and the processing
cost according to the target applications.

The feature extraction and the heartbeat classification meth-
ods have been studied, which are also essential for ECG signal
processing. The feature extraction has been investigated by ECG
morphology [18], [19], heartbeat interval features [18]–[20],
and frequency-based features [21] methods. And the employed
classification methods include linear discriminants [21], back-
propagation neural networks [18], and learning vector quan-
tization [20]. However, they are usually employed for the
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Fig. 1. Flow diagram of the proposed ECG signal processing algorithm.

clinical instruments, not holter system, where the high-
computation complexity and the large memory capacity are
available. Thus, the light algorithm optimized for the holter
system should be selected while maintaining the accuracy.

In this paper, the three-step compression algorithm and the
ECG classification algorithm are proposed for the continuous
ECG holter system. Fig. 1 shows the flow diagram of the
proposed ECG signal-processing algorithm. It consists of two
stages: the preprocessing stage and the main processing stage.
The ECG sensing data are digitized and transmitted to the pre-
processing stage. At the preprocessing stage, the filtering unit is
applied to reduce the noises such as baseline wander, power line
interference, and high-frequency noise. In this study, two-stage
finite-impulse response (FIR) filters are implements with 10-tap
filters and the programmable coefficients. By applying the pro-
grammable coefficients, the FIR filters can be used as low-pass
filter or high-pass filter. The main processing stage consists of
the compression flow and the classification flow. After filter-
ing in the preprocessing stage, the quad level vector (QLV),
which indicates the ECG waveform delineation and its informa-
tion level, is generated for the main processing stage. The QLV
support both the flows to achieve better performance with low
computational complexity. The compression flow combines the
lossy and the lossless algorithm, which are the skeleton, delta
coding, and the Huffman coding. The classification flow extracts
the features and analyzes whether the current heartbeat has ab-
normal arrhythmia. Moreover, the unit block size optimization
for maintaining the signal quality, adaptive threshold adjustment
for the algorithm reliability, and the 4-bit-wise Huffman cod-
ing methods for memory capacity reduction the computational
complexity are applied.

This paper is organized as follows. The detailed explana-
tion about the compression and the classification techniques are
presented in Section II and III, respectively. In Section IV, the
evaluation results are reported, and the noise injection effect is
also discussed. Finally, conclusions are made in Section V.

II. COMPRESSION FLOW

A. Skeleton of ECG Data

The ECG signal can be divided into a crucial part and a plain
part [14]. The QRS complex wave is the most important part
of the cardiology system to determine arrhythmia [13]. The
P- and T-waves also have a high level of information, and the
remaining plane parts of TP segment contain less information.

Therefore, in this work, the ECG signal is classified into four
different levels to preserve as much property of the information
as possible. Afterward, the number of bits is assigned differently
according to the level. For example, more bits are assigned to
the highest level block, and fewer bits are assigned to the lower
level block.

In this way, the ECG data are divided into smaller blocks and
every block is encoded in real time as an independent entity.
The block length is decided according to the sampling rate as
(1) shows

NB = ftruncn

(
tunitSR,

⌊
log2

(
SR

c

)⌋)

where ftruncn(x, n) =
�x2n + 0.5�

2n
(1)

where NB represents the block length, SR is the ECG sampling
rate, c is the programmable constant between 100 and 200, tunit
is unit block size, and ftruncn is the rounding-truncation function
with 2n . In this work, the unit block size is selected in 0.04 s,
which is the half duration of the QRS complex duration. It is a
suitable period to detect the change the ECG signal precisely.

After block division, the QLV of the block is calculated.
For normal ECG signals, the QRS complex part can be re-
garded as a typical representative signal with high standard de-

viation (STD =
√∑NB −1

I=0 (xi − x̄)2/NB ) in comparison with
the plain part [14]. The complex block with high STD has more
crucial information than the plain block with low STD. How-
ever, the STD requires the complex calculations such as square
root (

√
x) and squaring (x2). Therefore, the mean deviation

(MD) value is proposed to determine the QLV instead of the
STD. The MD is defined as follows:

MD =
∑NB −1

i=0 |xi − x̄|
NB

(2)

where xi is the sampled data, x̄ is the mean value for one block,
and NB is the block size. The MD requires the only absolute
operation, thus it leads to the lower computation complexity
than do the STD with the almost same results [22].

Afterward, each block is decomposed into four compression
levels by comparing the MD value with the three threshold
values (TH0 , TH1 , TH2) as given by (3), the proposed skeleton
equation.

QLV(CRblock) =




0(8α : 1) if MD < TH0

1(4α : 1) if TH0 ≤ MD < TH1

2(2α : 1) if TH1 ≤ MD < TH2

3(α : 1) if MD ≥ TH2 .

(3)

Fig. 2 shows the skeleton algorithm. The input consists
of the block-wise discrete signal {xi(m), i = 1, 2, ...n,m =
1, 2, ...NB }. And let Nl

B = NB /23−l , then the output of each
block is the set y

l
= (yl,1 , yl,2 , . . . , yl,N l

B
)T at levels l = 0, 1,

2, 3. The final output {yi(ml), i = 1, 2, . . . n, ml = 1, 2, . . .
Nl

B } is determined by the MD value corresponding to the QLV
in (3). If the CR of the block (CRblock ) of the third level is α : 1,
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Fig. 2. Block diagram of skeleton algorithm.

Fig. 3. Evaluated result of skeleton algorithm with MIT-BIH record 231.
(a) Original ECG signal. (b) MD values. (c) QLV. (d) Skeleton results.

those of the second, first, and zeroth level are 2α : 1, 4α : 1, and
8α : 1, respectively.

The ECG data from MIT-BIH [23] is used to verify the ef-
ficiency of the proposed skeleton algorithm. The sampling rate
and the resolution of the signal are 360 samples/s and 12 bits,
respectively. Fig. 3 shows the skeleton steps by the part of the
MIT-BIH record 231 data.

In order to obtain the accurate QLV, it is important to choose
properly the three threshold values (TH0 , TH1 , TH2). Since the
amplitude of ECG signal varies with the environmental con-
ditions such as noise injection and body movements, the QLV
threshold should be adaptable to deal with those variations in a
real time. The threshold values are determined by the maximum
MD value (MDmax ) of the previous eight heartbeats, then the
results is applied to the preprocessing by the feedback path for
QLV adjustment of the next heartbeat. The threshold values are
determined as (4).

THl =
1
kl

∑7
i=0 MDmax,i

8
, l = 0, 1, 2 (4)

where the threshold coefficients kl are the programmable coeffi-
cient. Fig. 4 shows the effect of the CR and the R-peak detection

Fig. 4. Optimum point selection of the threshold coefficients (k2 ).

Fig. 5. Adaptive threshold value adjustment according to the ECG amplitude
variation.

accuracy according to the value of the coefficient k2 . The CR in-
crease with the decrease of the k2 . However, the lower k2 value
is very susceptible to the noise interference or the amplitude
variation, and its detection accuracy is very low. On the con-
trary, if the coefficient values go up, the CR decreases while the
accuracy improves. Therefore, there exists the optimum thresh-
old values between the noise robustness and the accuracy, and
the optimum point for the k2 is between 1.6 and 2.0 according
to the Fig. 4. Fig. 5 shows the results of the adaptive threshold
value adjustment according to the amplitude variation. Although
the 80% amplitude variation is applied, the threshold values can
be adapted immediately to the variation after few heartbeat, thus
the accurate level determination can be obtained.

The output format of the skeleton [Fig. 3(d)] consists of the
signal amplitude and the sampling interval for the later decoding
operation. When decoding the skeleton data, the linear interpo-
lation method is used for the smooth reconstructed waveform
with small error rate.

B. Lossless Compression: Huffman Coding

The delta coding and the lossless compression algorithm are
adapted after the skeleton method. The delta coding is calculated
with difference with the previous number (yi = xi − xi−1). It
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TABLE I
MODIFIED 4-BIT-WISE HUFFMAN CODING TABLE

stores the changes instead of the absolute values to reduce
the number of bit. The Huffman coding is selected because
it provides minimum encoding cost when the original data has
the unique distribution [6]. According to the Huffman coding
scheme, the most frequently occurring values have the shortest
bit code length, and the rarely occurring data have the longest
bit code length. After the skeleton step, the input data have
Gaussian distribution, which is more than 50% of the data are
located near the zero. Thus, these high frequently occurring data
can be transformed with the short length of code by the Huffman
coding. Table I shows the modified 4-bit-wise Huffman coding
table proposed in this paper. It divides the entire range into the
four groups according to the input value to reduce the length and
the number of the prefix code bits. Its output result consists of
the prefix code and the encoded data. The prefix code is selected
by the data probability distribution and indicates the group of
the input range. The group 0 is reserved specially to notice the
end of the block and the information of the QLV, while the other
groups show the encoded data. The modified Huffman coding
method transforms the sample-oriented format into the 4-bit-
word oriented stream. So, it can obtain the unified data format
for the efficient memory access, although the variable sample
resolution is provided. When decoding the Huffman code, the
bit stream is decoded into the 4-bit-word. The first bit is picked
up and compared with the Huffman table, and the original value
is reconstructed from the remaining encoded data. The average
CR of the Huffman coding is approximately 2:1 without the
compression error rate.

III. ECG CLASSIFICATION FLOW

The second flow of the main processing is the classification.
It consists of the segmentation, the feature extraction, and the
classification stages. One heartbeat signal begins from the P
wave and finishes at the next P wave of the following heart-
beat. After the segmentation, the significant features of ECG,
such as the R point, RR interval, amplitude of R point, av-
erage RR interval, QRS duration, and existence of QRS [19],
should be extracted for the next classification stage. Since the
proposed QLV represents the delineation of ECG signal briefly,
the heartbeat segmentation and the feature extraction stages can
be implemented simply by using the proposed QLV without raw
data of the ECG signal. Afterward, the classification algorithm
checks whether the current heartbeat has abnormal arrhythmia.
The nine major disorder symptoms are chosen, such as brad-
cardia, tachycardia, asystole, skipped beat, R-on-T, bigeminy,
trigeminy, premature ventricular contraction and atrial prema-

Fig. 6. (a) Selected nine major arrhythmia symptoms and their numerical
conditions [24]. (b) Arrhythmia analysis flow diagram.

ture beats, and each symptom can be characterized by the simple
numerical calculation [24], as shown in Fig. 6(a). Fig. 6(b) shows
the overall flow diagram for the arrhythmia detection operation.
When the extracted features meet the specific condition, the cur-
rent heartbeat is classified as the disorder heartbeat. Otherwise,
the heartbeat is regarded as normal.

The accuracy of R-peak detection is crucial for the reliable
analysis in this flow, because the R-peak contains the primary
data for arrhythmia analysis like RR interval [25]. During the
R-peak detection operation, the QLV helps to reduce the peak
searching cost. In case of the conventional system [25], the
searching window would be 1 s same as the one heartbeat du-
ration. In this proposed system, searching for QLV array is
performed first. Then the only selected searching window, 40–
80 ms, is applied to find the real peak. Although this searching
method has 1% memory capacity overhead for the QLV array,
the number of memory access time is reduced by 90%. Fig. 7
shows the successful R-peak detection results, using the MIT-
BIH record 100 with serious noise injection (SNR = −10 dB)
and the selected search window. By using the QLV, only 8%
search window is enough for the investigation compared to the
entire range, as shown in Fig. 7(b). Only one fault negative result
is detected as R-peak due to the steep noise denoted by x near
the 3800 point of Fig. 7(a), but more preprocessing like filtering
and the postprocessing can correct the fault detection.
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Fig. 7. (a) R-peak detection results. (b) Searching window in record 100 with
noise injection (SNR = −10 dB).

IV. EVALUATION RESULTS

The MIT-BIH Arrhythmia Database is used to evaluate the
performance [23]. The sampling rate and the resolution are 360
samples/s and 12 bits, respectively. In addition, the Gaussian
white noise source is injected from −10 to 20 dB SNR for
the noise stress test. The test vector is produced by injection
of the noise source [26] with MIT-BIH record 100 [23]. The
performances of compression coding are evaluated by the CR
and the compression error rate of the percentage root mean
square difference (PRD). And the R-peak detection performance
is evaluated by the sensitivity (Se) and the positive predictivity
(+P).

A. ECG Compression Coding Performance

The overall CR is calculated by the product of the two CRs,
the skeleton (CRsk ) and the Huffman coding (CRhf ), and it is
given in (5) as:

CRoverall = CRsk × CRhf =
3∑

l=0

(CRsk,l × Psk,l)

×
3∑

s=0

(CRhf ,g × Phf ,g ) (5)

where l is the level of the skeleton, g is the group of the
Huffman coding, and P represents the distributed percentage.
According to the evaluation results of the MIT-BIH database,
using 231 record, the subblock CR of skeleton is defined as
CRsk,0 :CRsk,1 :CRsk,2 :CRsk,3 = 1/16:1/8:1/4:1/2, when let α
be 2 in formula (2). And its percentages are Psk,0 :Psk,1 :Psk,2 :
Psk,3 = 60:25:10:5, so the CRsk is 8.4:1. If α is bigger than 2,
the CR increases, of course. And the subblock CR of Huffman
coding is defined as CRhf ,0 :CRhf ,1 :CRhf ,2 :CRhf ,3 = 4/12:
8/12:12/12:16/12, according to the proposed Huffman coding
table. The percentage distribution are Phf ,0 :Phf ,1 :Phf ,2 :Phf ,3 =
31:52:17:0, so the CRhf is 1.88:1. Therefore, the overall CR
(CRoverall) would be 15.8:1 from (5).

The Fig. 8(a) and (b) shows the original ECG signal and
the reconstructed results, respectively. The result shows that
high-quality signal is reconstructed with small error rate. Even
though the maximum peak error is 0.85%, the most of samples
shows <0.1% error, as shown in Fig. 8(c). The PRD is usually

Fig. 8. (a) Original ECG signal of record 231. (b) Reconstructed ECG signals.
(c) Reconstructed error rate between original and reconstructed signal.

used to quantify the performance quality of the compression
algorithm [27]. The PRD indicates the error between the original
ECG samples and the reconstructed data, and is defined as

PRD(%) =

√∑n
i=1 (xi − x̃i)2∑n

i=1 x2
i

× 100 (6)

where n is the number of samples, xi and x̃i are the original
data and the reconstructed data, respectively. The PRD of the
Huffman coding is conserved because it is the lossless compres-
sion [6].

The CR and PRD have the close relationship in the lossy
compression algorithm. In general, the CR goes higher with
the higher lossy level, while the error rate goes up. The final
goal of the proposed compression algorithm is to keep the PRD
value smaller than that of the conventional methods [4]–[17]
while maintaining the similar CR. Fig. 9(a) shows the evaluation
results of the PRD as a function of CR for each record from the
MIT-BIH database. The results show that all the methods have
high correlation between the CR and the PRD. The average PRD
value of the evaluation in Fig. 9(a) is 0.641% at 16.9:1 CR.

The comparison results with the conventional methods, such
as wavelet based the embedded zero-tree wavelet ECG coder [5],
set partitioning in hierarchical trees (SPIHT) ECG coder [16],
and the modified SPIHT ECG coder [15], are also given in
Fig. 9(b). Their results show that the proposed method has better
PRD performance than other conventional method in the CR
range of 4–20, especially at the high CR.

The quality score (QS = CR/PRD) was proposed to quantify
the overall performance of the compression algorithm, consid-
ering both the CR and the error rate [27]. A high score repre-
sents a good compression performance. This work shows the
QS = 29.36 when CR = 16.9:1 and PRD = 0.641%. Table II
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Fig. 9. (a) PRD versus CR of selected records from the MIT-BIH database.
(b) Comparison results of performance of the proposed algorithm with the
conventional algorithms.

TABLE II
COMPARISON RESULTS OF QUALITY SCORE OF THE PROPOSED ALGORITHM

WITH THE CONVENTIONAL ALGORITHMS

compares the QS of the proposed method with those of the con-
ventional methods. The first three methods have poor CR and
the PRD performance. The Kim’s method [14] had the similar
CR but showed higher PRD, because the transformation com-
pression method produces some reconstruction distortions. The
Fira’s method [27] also used the two-step compression algo-
rithm, skeleton, and the LZW. Although it has high CR, how-
ever, its PRD is also higher because the peak-picking skeleton
algorithm is not accurate than this work. With respect to com-
putation requirements, the encoding rate is also evaluated. The
encoding rates of [11], [12], [27] are not reported, and only the
encoding rate of Kim’s [13] is compared with this method. The
encoding rate is normalized with 12-bit data processing, and it
is 6.4 kbps for this work, which is much higher than that of
2.56 kbps for Kim’s.

TABLE III
R PEAK-DETECTION PERFORMANCE WITH THE NOISE INJECTION

TABLE IV
COMPARISON RESULT OF R-PEAK DETECTION ACCURACY

B. R-Peak Detection Performance

The performance of the classification can be represented by
the sensitivity (Se) and the positive predictivity (+P). The Se
and +P are defined as follows:

Sensitivity (Se) =
TP

TP + FN
(7)

Positive P redictivity (+P ) =
TP

TP + FP
(8)

where false positive (FP) is the number of false beat detection,
true positive (TP) is the total number of correct R-peak detec-
tion by the algorithm, and false negative (FN) is the number
of the failures to detect the true beat. The proposed method
has good sensitivity and positive predictivity, Se = 100% and
+P = 100%. For the noise robustness test, the signal with seven
different level of injected noise was used from −10 to 20 dB
SNR. Table III shows the sensitivity and the positive predictivity
results in proportion to the noise level. According to the anal-
ysis results, the R-peak detection accuracy is very high at the
low-level noise condition, but some false detection occurs at the
high-level noise. The Se and +P are 95.63% and 97.04%, re-
spectively, at −10 dB SNR (worst case). Table IV shows the
R-peak detection accuracy performance and the comparison
with the previous works [25], [28]–[30], and we can see that
the performance of this work is better than the others.

C. Processing Cost

The test vector for one minute ECG signal is used to evaluate
the processing cost required in the skeleton, the Huffman cod-
ing, and the classification flow. The evaluation environment is
1 MHz operating frequency with 8 kB RAM running MSP 430
microcontroller. The processing cost is calculated based on the
processing time, the power consumption, the memory capacity,
and the number of the memory access. They can be merged to
the energy consumption index, as shown in Fig. 10. Moreover,
the graph shows that the overall energy can be reduced by using
the proposed compression technique. Although the proposed
compression technique needs memory capacity and preprocess-
ing overhead, it can reduce the postprocessing time. As a result,
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Fig. 10. Overall energy reduction with proposed compression technique.

the overall energy consumption is reduced by 45.3%, and the
final energy consumption is 373 pJ/sample.

V. CONCLUSION

An ECG signal processing method consisting of the three-step
compression flow and the classification flow is proposed for the
Holter system. The proposed QLV delineate the ECG signal,
and it supports both the flows to achieve better performance
with low computation complexity. By applying the QLV, the
overall CR improves while maintaining the small compression
error rate, and high-accuracy performance can achieve at the
segmentation and the R-peak detection stage. The performance
is evaluated by using the MIT/BIH Arrhythmia Database, and
the noise robust test is also performed for the reliability of the
algorithm. The average CR is 16.9:1 with 0.641% PRD value,
and the encoding rate is 6.4 kbps. The accuracy performance
of the R-peak detection is 100% without noise and 97.5% at
the worst case with −10 dB SNR noise. The overall energy
consumption is 373 pJ/sample when all functions algorithms
are performed and is achieved 45.3% reduction.

REFERENCES

[1] D. Jabaudon, J. Sztajzel, K. Sievert, T. Landis, and R. Sztajzel, “Usefulness
of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation
and flutter after acute stroke and transient ischemic attack,” Stroke, J.
Amer. Heart Assoc., vol. 35, pp. 1647–1651, May 2004.

[2] H. Kim, S. Choi, and H.-J. Yoo, “A low power 16-bit RISC with lossless
compression accelerator for body sensor network system,” in Proc. IEEE
ASSCC, Nov. 2006, pp. 207–210.

[3] S.-J. Song, N. Cho, S. Kim, J. Yoo, and H.-J. Yoo, “A 2 Mb/s wideband
pulse transceiver with direct-coupled interface for human body commu-
nications,” in Proc. IEEE ISSCC, Feb. 2006, pp. 2278–2287.

[4] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion
(WDD) measure for ECG signal compression,” IEEE Trans. Biomed.
Eng., vol. 47, no. 11, pp. 1422–1430, Nov. 2000.

[5] T. A. Welch, “A technique for high-performance data compression,” Com-
puter, vol. 17, no. 6, pp. 8–19, Jun. 1984.

[6] Health Informatics. Standard Communication Protocol. Computer-
assisted Electrocardiography, British-Adopted European Standard BS EN
1064, 2005.

[7] D. A. Dipersio and R. C. Barr, “Evaluation of the fan method of adaptvie
sampling on human electrocardiograms,” Med. Biol. Eng. Comput.,
vol. 23, pp. 401–410, Sep. 1985.

[8] J. P. Abenstein and W. J. Tompkins, “A new data reduction algorithm for
real time ECG analysis,” IEEE Trans. Biomed. Eng., vol. BME-29, no. 1,
pp. 43–48, Apr. 1982.

[9] J. R. Cox, F. M. Nolle, H. A. Fozzard, and G. C. Oliver, “AZTEC, a
preprocessing program for real time ECG rhythm analysis,” IEEE Trans.
Biomed. Eng., vol. BME-15, no. 4, pp. 128–129, Apr. 1968.

[10] W. C. Mueller, “Arrhythmia detection program for an ambulatory ECG
monitor,” Biomed. Sci. Instrum., vol. 14, pp. 81–85, 1978.

[11] M. L. Hilton, “Wavelet and wavelet packet compression of electrocardio-
grams,” IEEE Trans. Biomed. Eng., vol. 44, no. 5, pp. 394–402, May
1997.

[12] A. Djohan, T. Q. Nguyen, and W. J. Tompkins, “ECG compression using
discrete symmetric wavelet transform,” in Proc. IEEE EMBC, 1995, vol. 1,
pp. 167–168.

[13] R. S. H. Istepanian and A. A. Petrosian, “Optimal zonal wavelet-based
ECG data compression for mobile telecardiology system,” IEEE Trans.
Inf. Technol. Biomed., vol. 4, no. 3, pp. 200–211, Sep. 2000.

[14] B. S. Kim, S. K. Yoo, and M. H. Lee, “Wavelet-based low-delay ECG
compression algorithm for continuous ECG transmission,” IEEE Trans.
Inf. Technol. Biomed., vol. 10, no. 1, pp. 77–83, Jan. 2006.

[15] S.-C. Tai, C.-C. Sun, and W.-C. Yan, “A 2-D ECG compression method
based on wavelet transform and modified SPIHT,” IEEE Trans. Biomed.
Eng., vol. 52, no. 6, pp. 999–1008, Jun. 2005.

[16] M. S. Manikandan and S. Dandapat, “ECG signal compression using
discrete sinc interpolation,” in Proc. IEEE ICISIP, Dec. 2005, pp. 14–19.

[17] S. Olmos, M. MillAn, J. Garcia, and P. Laguna, “ECG data compres-
sion with the Karhunen-Loeve transform,” Comput. Cardiol., vol. 8–11,
pp. 253–256, Sep. 1996.

[18] Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications
of artificial neural networks for ECG signal detection and classification,”
J. Electrocardiol., vol. 26, pp. 66–73, 1993.

[19] P. de Chazal, S. Palreddy, and W. J. Tompkins, “Automatic classification of
hearbeats using ECG morphology and heartbeat interval features,” IEEE
Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–1206, Jul. 2004.

[20] Y. H. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG
beat classifier using a mixture of experts approach,” IEEE Trans. Biomed.
Eng., vol. 44, no. 9, pp. 891–900, Sep. 1997.

[21] L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passariello, “Comparing
wavelet transforms for recognizing cardiac patterns,” IEEE Eng. Med.
Biol. Mag., vol. 14, no. 2, pp. 167–173, Mar./Apr. 1995.

[22] H. Kim, Y. Kim, and H.-J. Yoo, “A low cost quadratic level ECG com-
pression algorithm and its hardware optimization for body sensor network
system,” in Proc. IEEE EMBC, Aug. 2008, pp. 5490–5493.

[23] (1979). [Online]. Available: http://www.physionet.org/physiobank/
database/mitdb/

[24] D. C. Reddy, Biomedical Signal Processing—Principles and Techniques.
New York: McGraw-Hill, 2005.

[25] N. M. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of first-derivative
based QRS detection algorithms,” IEEE Trans. Biomed. Eng., vol. 55,
no. 2, pp. 478–484, Feb. 2008.

[26] (1992). [Online]. Available: http://www.physionet.org/physiobank/
database/nstdb/

[27] C. M. Fira and L. Goras, “An ECG signals compression method and
its validation using NNs,” IEEE Trans. Biomed. Eng., vol. 55, no. 4,
pp. 1319–1326, Apr. 2008.

[28] D. S. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “A new QRS
detection algorithm based on the Hilbert transform,” Comput. Cardiol.,
vol. 27, pp. 379–382, 2000.

[29] D. S. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use
of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med.,
vol. 31, pp. 399–406, 2001.

[30] B. Hickey et al., “Non-episode-dependent assessment of paroxysmal ar-
tial fibrillation through measurement of RR interval dynamics and atrial
premature contractions,” Ann. Biomed. Eng., vol. 32, no. 5, pp. 677–687,
2004.

Hyejung Kim (S’04) received the B.S. and M.S. and
Ph.D. degrees from the Korea Advanced Institute of
Science and Technology, Daejeon, Korea, in 2004,
2006, and 2009, respectively.

She is currently a Postdoctoral Researcher with
the Interuniversity Microelectronics Center, Leuven,
Belgium. Her research interests include design and
implementation of low-energy biomedical signal pro-
cessors for body sensor network application.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 21:08:14 EDT from IEEE Xplore.  Restrictions apply. 



100 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 1, JANUARY 2010

Refet Firat Yazicioglu received the B.S. and M.S.
degrees in electrical and electronics engineering
from the Middle East Technical University (METU),
Ankara, Turkey, in 2001 and 2003, respectively, and
the Ph.D. degree in electronics Engineering from the
Katholieke Universiteit Leuven, Leuven, Belgium, in
2008.

From 2001 to 2003, he was a Research Assistant
with the METU, where he was engaged in research
on fabrication of surface micromachined capacitive
accelerometers and their readout circuits. From 2003

to 2008, his Ph.D. studies was engaged in research on the design of low-power
and low-noise readout circuits for portable biopotential acquisition systems,
He is currently a Researcher with the Interuniversity Microelectronics Center,
Leuven, Belgium. His research interests include design of ultralow-power and
high-performance circuits for biomedical applications.

Patrick Merken received the Engineer de-
gree in electrical engineering from the Royal
Military Academy, Polytechnical Division, Brussels,
Belgium, in 1988, the Master of Engineering in ma-
terial science from the University of Leuven, Leuven,
Belgium, in 1996, and the Ph.D. degree in electrical
engineering from the University of Leuven.

During his Ph.D. studies, he was engaged in re-
search on hybrid integration of III–V type semicon-
ductors and silicon CMOS VLSI circuits. He is cur-
rently a Professor with the Royal Military Academy,

Brussels, Belgium. He is also with the Interuniversity Microelectronics Center
(IMEC), Leuven, Belgium, where he is engaged in research on design and im-
plementation of low-noise, low-power sensor readout electronics, and cryogenic
circuits.

Chris Van Hoof (M’87) received the Ph.D. in elec-
trical engineering from the University of Leuven,
Leuven, Belgium, in collaboration with the Interuni-
versity Microelectronics Center (IMEC), Leuven,
Belgium, in 1992.

He is currently the Integrated Systems Director
and the Program Director at the IMEC, where he be-
came successively the Head of the Detector Systems
Group (in 1998), the Director of the Microsystems
and Integrated Systems Department (in 2002), and
the Program Director (in 2007). His research inter-

ests include the application of advanced packaging and interconnect technology
(2-D and 3-D integration, RF integration) and ultralow power design technol-
ogy for the creation of integrated systems, ultralow power wireless autonomous
sensor systems, and smart implantable devices. His work has resulted in flight
hardware for two cornerstone European Space Agency missions, and he is a
laureate of the Belgian Royal Academy of Sciences. Since 2000, he has been a
Professor at the University of Leuven (Katholieke Universiteit Leuven), where
he is the promoter of eight doctoral theses.

Hoi-Jun Yoo (F’08) graduated from the Elec-
tronic Department, Seoul National University, Seoul,
Korea, in 1983, and received the M.S. and Ph.D. de-
grees from the Department of Electrical Engineering,
Korea Advanced Institute of Science and Technol-
ogy (KAIST), Daejeon, Korea, in 1985 and 1988,
respectively.

From 1988 to 1990, he was with the Bell Com-
munications Research, Red Bank, NJ. In 1991, he
became a manager of the Dynamic Random Access
Memory (DRAM) Design Group, Hyundai Electron-

ics and designed a family of fast-1 M DRAMs to 256 M synchronous DRAMs.
In 1998, he joined the Faculty of the Department of Electrical Engineering,
KAIST, where he is currently a Full Professor. From 2003 to 2005, he was
the Full Time Advisor to Minister of the Korea Ministry of Information and
Communication and National Project Manager for System on a Chip (SoC)
and Computer. In 2007, he founded System Design Innovation and Applica-
tion Research Center, KAIST, where he was engaged in research on SoCs for
intelligent robots, wearable computers, and biosystems. His research interests
include high-speed and low-power network on chips, 3-D graphics, body area
networks, biomedical devices and circuits, and memory circuits and systems.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on March 16,2010 at 21:08:14 EDT from IEEE Xplore.  Restrictions apply. 


